Огородник
Назад

Жизненный цикл растений это

Опубликовано: 23.03.2020
Время на чтение: 4 мин
0
1

Жизненные циклы и эволюция

Любой живой организм, от вируса до слона, человека или дуба, обязательно проходит жизненный цикл — устойчивую последовательность фаз (или стадий), часть из которых в норме сопровождается размножением. Чередование жизненных циклов равносильно смене поколений. По ходу этого чередования жизненные циклы «редактируются», и вносимые в них небольшие изменения слагаются в историческое развитие жизни — эволюцию (рис. 1).

Попросту говоря, биологическая эволюция — это сумма изменений жизненных циклов. Сопряжение жизненного цикла и эволюции — важнейшая особенность, свойственная всем живым системам и только им (А. С. Раутиан, 1993. О природе генотипа и наследственности). Одна из самых интересных проблем, с которыми имеют дело биологи в этой области — происхождение и эволюция жизненного цикла наземных растений.

Жизненный цикл, состоящий из повторяющихся стадий, есть абсолютно у любого живого существа. Но на этом однообразие кончается: например, жизненные циклы вируса и многоклеточного животного не имеют между собой почти ничего общего («почти» — потому что молекулярные механизмы копирования и считывания наследственной информации у них все же едины).

У эукариот — организмов со сложной клеткой, хранящей генетический материал в ядре, — жизненный цикл, как правило, состоит из сменяющих друг друга фаз с разным числом копий ядерного генома, или, как принято говорить, с разной плоидностью. Клетка, хранящая в ядре одну копию генома, называется гаплоидной, две копии — диплоидной (бывают и более высокие плоидности, но мы сейчас их не рассматриваем).

Диплоидная фаза переходит в гаплоидную в результате мейоза — особого способа клеточного деления, при котором из одной диплоидной клетки образуется четыре гаплоидных. Гаплоидная фаза переходит в диплоидную в результате оплодотворения — слияния двух гаплоидных клеток, которые называют половыми клетками или гаметами (случаи, когда слияние ядер отделено от слияния клеток, как у инфузорий или высших грибов, мы сейчас опять же не рассматриваем, потому что сути дела они не меняют). Диплоидная клетка, образованная слившимися гаметами, называется зиготой. Именно с зиготы начинается, например, эмбриональное развитие животных.

Есть три типа жизненных циклов эукариот, отличающихся способом чередования гаплоидной и диплоидной фаз.

1) Жизненный цикл, где «главная», питающаяся и растущая, стадия, — гаплоидная. В этом случае гаметы образуются митозом — обычным «повседневным» делением, в результате которого каждая клетка дает две себе подобных. Гаметы сливаются в зиготу, которая сразу же делится мейозом, вновь давая гаплоидные клетки. Такой жизненный цикл называется жизненным циклом с зиготической редукцией. Никаких диплоидных стадий, кроме зиготы, в нем нет.

Примеры обладателей жизненного цикла с зиготической редукцией — одноклеточная зеленая водоросль хламидомонада, колониальная зеленая водоросль вольвокс, нитчатая зеленая водоросль улотрикс.

2) Жизненный цикл, где питающаяся и растущая стадия — диплоидная. В этом случае зигота делится митозом, давая диплоидные клетки, а мейоз происходит только при образовании гамет. Такой жизненный цикл называется жизненным циклом с гаметической редукцией. Все стадии, кроме гамет, в нем диплоидные.

Предлагаем ознакомиться  Обзор популярных декоративных злаков (фото, названия, описания)

Примеры обладателей жизненного цикла с гаметической редукцией — бурая водоросль фукус и все многоклеточные животные, включая, разумеется, и человека.

3) Жизненный цикл, в котором есть две питающихся и растущих стадии — одна гаплоидная, а другая диплоидная. В этом случае некоторые клетки диплоидного организма делятся мейозом, но дают не гаметы, а споры — гаплоидные клетки, любая из которых может дать новый организм без оплодотворения, то есть ни с кем не сливаясь.

Из споры вырастает гаплоидный организм, который образует гаметы путем обычного деления — митоза. Из слившихся гамет образуется зигота, дающая диплоидный организм, после чего цикл повторяется. Такой жизненный цикл называется жизненным циклом со спорической редукцией (рис. 2). Примеры его обладателей — одноклеточные фораминиферы, пластинчатая зеленая водоросль ульва и все высшие растения.

У высших растений и водорослей, имеющих жизненный цикл со спорической редукцией, диплоидную стадию (производящую споры) принято называть спорофитом, а гаплоидную стадию (производящую гаметы) гаметофитом. У зеленой водоросли ульвы спорофит и гаметофит изоморфны, то есть устроены совершенно одинаково — без микроскопа их не отличить. Но это редкий случай. Обычно спорофит и гаметофит отличаются друг от друга, часто до полной неузнаваемости.

спорофит — это сам хвощ, а гаметофит — маленький пластинчатый заросток, найти который неспециалисту очень трудно. У плаунов гаметофит зачастую подземный, бесцветный и неспособный фотосинтезировать — на пушистый ветвящийся зеленый спорофит, который мы встречаем в лесу и называем плауном в обычной жизни, он ничуть не похож.

Наконец, у голосеменных и цветковых растений женский гаметофит скрыт внутри семени, которое само является ничем иным, как органом спорофита, и из которого сразу вырастает спорофит следующего поколения. Женский гаметофит семенных растений ни на каком отрезке жизненного цикла не существует автономно — в отличие от мужского, который стал микроскопическим и называется пыльцевым зерном.

Пыльца — это множество мужских гаметофитов, покрытых рассчитанной на перенос по воздуху прочной оболочкой. Нечего и говорить, что и мужской, и женский гаметофиты у семенных растений крайне уменьшены — в самом распространенном случае, соответственно, до двух и семи клеток (А. Л. Тахтаджян, 1980. Развитие мужского и женского гаметофита). Все известные нам травы, кустарники и деревья — это спорофиты. Именно они в основном образуют растительный покров Земли.

Жизненный цикл растений это

Единственная современная группа высших растений, где гаметофит доминирует над спорофитом, — мхи. Основная зеленая часть растения мха — это гаплоидный гаметофит. Что касается диплоидного спорофита, то он у мхов представляет собой стволик с коробочкой, который растет прямо на гаметофите и питается за его счет (фотосинтезировать он, как правило, неспособен).

Мы видим, что жизненный цикл высших растений гораздо сложнее привычного нам жизненного цикла животных. Чередование гаплоидной и диплоидной многоклеточных фаз, еще и сильно отличающихся друг от друга, — чисто растительное «изобретение», животным оно неведомо. А поскольку земные биологи сами являются животными, то неудивительно, что разобраться в этом им удалось далеко не сразу — путаница продолжалась до середины XIX века, когда немецкий ботаник Вильгельм Гофмейстер (Friedrich Wilhelm Benedikt Hofmeister) сумел правильно «расшифровать» жизненный цикл цветковых.

А теперь зададимся вопросом о том, как этот жизненный цикл возник.

Предлагаем ознакомиться  Полки для цветов своими руками 230 фото: напольные, на стену, угловые, на подоконник

Новый обзор палеонтологического аспекта этой проблемы недавно опубликовал Пол Кенрик (Paul Kenrick) — известный британский палеоботаник, работающий в лондонском Музее естественной истории (Natural History Museum) и уже много лет занимающийся вопросами ранней эволюции наземных растений. «Жизненные циклы, сохраненные в камне» — название одной из главок его статьи.

Первые совершенно бесспорные остатки высших растений — это воздушные споры с плотной оболочкой и характерной трехлучевой щелью, которая образуется в процессе расхождения спор при мейозе (см. С. В. Мейен, 1981. Следы трав индейских). В наше время такие споры характерны для сосудистых растений и для некоторых мхов, в том числе и для антоцеротовых.

В палеонтологической летописи самые древние споры с трехлучевой щелью появляются в конце ордовикского периода, около 450 миллионов лет назад (см. Палеонтологи уточнили время и место появления сосудистых растений, «Элементы», 18.04.2009). Однако древнейшие наземные растения наверняка возникли несколько раньше.

D:������� ���������� ������������004-004-ZHiznennyj-tsikl-khlamidomonady.jpg

Дело в том, что не позднее середины ордовика в палеонтологической летописи появляются так называемые криптоспоры, лишенные трехлучевой щели и слабее приспособленные к высыханию, но тоже, скорее всего, принадлежащие каким-то примитивным высшим растениям (P. Steemans et al., 2009. Origin and radiation of the earliest vascular land plants).

Парадокс в том, что сколько-нибудь достоверно определимые остатки «тел» высших растений появляются в летописи гораздо позже, чем их споры. Объясняется это просто: споры, с их прочными оболочками, изначально приспособлены к перенесению неблагоприятных условий, и поэтому сохраняются они гораздо лучше, чем зеленые гаметофиты или спорофиты (тем более что до появления древесины и других твердых растительных тканей тогда еще было далеко).

Так или иначе, это означает, что в начале эволюции высших растений была скрытая от нас фаза продолжительностью примерно 35 миллионов лет (C. H. Wellman, 2014. The nature and evolutionary relationships of the earliest land plants). На протяжении этой скрытой фазы весь жизненный цикл высших растений, кроме спор, остается палеонтологически «невидимым».

Предлагаем ознакомиться  Полезные и опасные свойства артишока

Достаточно целые остатки высших растений, по которым уже можно попытаться реконструировать их полный жизненный цикл, появляются в палеонтологической летописи только в начале девонского периода, примерно 407 миллионов лет назад. Именно такой возраст имеет флора знаменитого шотландского местонахождения Райни (Rhynie chert).

Типичные обитатели этого местонахождения — риниофиты, стелющиеся наземные растения с ветвящимися осями, но без листьев и корней. До недавнего времени все их найденные более-менее полные экземпляры, как правило, считались спорофитами. Предполагалось, что гаметофиты риниофитов были маленькими нежными заростками, практически не имевшими шансов захорониться целыми.

Сценарий происхождения высших растений

Начнем с самого начала. Высшие растения, несомненно, произошли от водорослей. Какой же жизненный цикл был у этих водорослей-предков?

Ответ известен. Скорее всего, у них был жизненный цикл с зиготической редукцией, то есть с единственной гаплоидной многоклеточной стадией (без спорофита). Из молекулярной систематики это следует вполне однозначно. Зеленые водоросли со сменой гаметофита и спорофита существуют, но — вот ирония судьбы!

— все они настолько далеки от высших растений, что никак не могут быть их предками. А вот те водоросли, которые к наземным растениям близки — харовые, колеохетовые, сцеплянки — все без исключения имеют жизненный цикл с зиготической редукцией, в котором единственной диплоидной стадией является зигота.

Как именно это произошло? По последним молекулярным данным, самыми близкими «внешними» родственниками высших растений являются водоросли-сцеплянки (B. R. Ruhfel et al., 2014. From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes). К этой группе относится, например, широко распространенная пресноводная нитчатая водоросль спирогира.

Такие данные вполне согласуются с предположением, что предком наземных растений была нитчатая (или, возможно, пластинчатая) водоросль, жившая на мелководье либо на влажном берегу. «Тело» этой водоросли, как и у современных сцеплянок, было гаплоидным, а ее зигота сразу делилась мейозом на четыре неподвижные споры (апланоспоры), которые разносились течением или ветром, давая новые колонии.

Согласно общим закономерностям экологии, в нестабильных условиях пересыхающей прибрежной зоны конкурентное преимущество должны были при прочих равных условиях получить r-стратеги — виды с короткими жизненными циклами, быстрым размножением и большим количеством потомства (G. L. Stebbins, G. J. C. Hill, 1980.

Did multicellular plants invade the land?). В нашем случае выиграли те водоросли, у которых зигота до начала мейоза стала несколько раз делиться обычным способом — митозом, превращаясь в многоклеточную структуру. В результате из одной зиготы получалось не четыре споры, а много. Таким образом, одноклеточная зигота породила многоклеточный диплоидный спорофит (напомним, что при митозе плоидность клеток не меняется).

, ,
Поделиться
Похожие записи
Комментарии:
Комментариев еще нет. Будь первым!
Имя
Укажите своё имя и фамилию
E-mail
Без СПАМа, обещаем
Текст сообщения
Adblock detector